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Given the scale of massively parallel systems, system failures are 
not a matter of if, but of when. When an inevitable system 

failure takes place, it is not viable to restart the calculation from 
the beginning, particularly if such an application (e.g., a complex 
simulation) has been running for a month or so. Thus, massively 
parallel applications rely on checkpointing, which consists of saving 
snapshots of the current state of an application into files on per-
sistent parallel storage systems. After a failure, users can restart the 
application from the most recent snapshot.

At present, concurrent and random-access checkpoint writes to a 
shared file require unnecessary 1) disk-seeking, and 2) file-locking 
at the parallel storage system. Such requirements drastically reduce 
bandwidth by as much as two orders of magnitude. To overcome 
this problem, we developed software known as Parallel Log-
structured File System (PLFS), which decouples concurrent access 

and reorganizes logical writes into 
sequential physical writes, thus 
enabling applications to write in 
parallel at a near-optimal storage 
bandwidth. 

PLFS works as follows: For every 
logical PLFS file created, PLFS 
creates a hierarchical directory 
structure, called a PLFS container, 
on the underlying parallel storage 
system. Hidden from users, this 
container consists of a single top-level 
directory and multiple subdirectories 
that contain the actual file data. 
To build a logical view of the file, 

PLFS uses the data and metadata within the container to implement 
a virtual interposition, or intermediate, layer. Multiple processes 
opening the same logical file for writing share the container, 
although each opening receives a unique data file within the 
container into which all of its writes are appended. By giving each 
writing process in a parallel application access to a nonshared data 
file, PLFS transparently converts write-access patterns to improve 
checkpoint bandwidth by as much as several orders of magnitude. 

Figure 1 shows how PLFS reorganizes a N-1 checkpoint file onto 
an underlying parallel system. The processes create a new file on 
PLFS called checkpoint1, causing PLFS in turn to create a contained 
structure on the underlying parallel file system. The figure also 
shows the access file, which is used to store ownership and privileged 
information about the logical file, the openhosts, and the metadata 
directories, all of which are use to cache metadata to improve query 
time. 

File systems have two basic checkpointing patterns: N-N and N-1. 
An N-N checkpoint is one in which each of a certain number of 
processes (N) writes to a unique file, for an equal number of files 
written (N processes = N files written). An N-1 checkpoint differs 
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Fig. 1. How PLFS rewrites a 
checkpoint file.

Fig. 2. These bars show the speedup in write bandwidth for eight  
different applications and two synthetics benchmarks. Note that the 
y-axis is logscale.
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in that all N processes write to a single shared file. Although both 
N-N and N-1 patterns pose challenges, we have observed that the 
challenges of N-1 checkpointing, from the perspective of the parallel 
storage system, are much more difficult. Applications using N-1 
patterns consistently achieve significantly less bandwidth than do 
those using an N-N pattern. Because N-N checkpointing derives 
higher bandwidth than N-1, the path to faster checkpointing is 
for application developers to rewrite existing N-1checkpointing 
applications to perform N-N checkpointing instead. Additionally, all 
new applications should be written to take advantage of the higher 
bandwidth available to N-N checkpointing. Some developers have 
gone to N-N checkpointing, but many continue to prefer an N-1 
pattern even though its disadvantages are well understood.

Of the 23 applications listed on the Parallel I/O Benchmarks, an 
industry standard developed by the Parallel I/O Benchmarking 
Consortium, at least 10 have an N-1 pattern. Two major 
applications at LANL use an N-1 checkpointing pattern, as do 
at least two of the eight initial applications chosen to run the 
Laboratory’s Roadrunner, the world’s first petascale computer. The 
parallel storage system attached to Roadrunner is the largest the 
Laboratory has ever had; testing it has revealed that the challenges 
of N-1 patterns are severely exacerbated at this scale. Given current 
bandwidths, we know of no current N-1 application at LANL that 
can effectively checkpoint across the full width of Roadrunner. 
PLFS, currently mounted on Roadrunner and many other 
Laboratory systems, allows them to do so (Fig 2). More generally, 
PLFS achieves this improvement for any parallel writes and not just 
checkpoint writes. PLFS also has been shown to improve bandwidth 
for many parallel reads.

The theory underlying this work is that concurrent, random-access 
checkpoint writes to a shared file require unnecessary disk-seeking 
and file locking at the parallel storage system, thereby drastically 
reducing bandwidth. By decoupling concurrent access and by 
reorganizing random logical writes into sequential physical writes, 
PLFS enables applications to write in parallel at a near-optimal 
storage bandwidth.

In addition to observing a large performance 
improvement at the Laboratory, which uses the 
Panasas ActiveScale (PanFS) storage system, we have 
also tested PLFS on the two other most widely used 
storage systems for supercomputing: the Linux cluster 
storage system (Lustre) and GPFS, the IBM General 
Parallel File system. We have demonstrated a 25X 
speedup on GPFS, an 8X speedup on Lustre, and a 
3000X speedup on PanFS. Notice that the Lustre and 
GPFS experiments were run on very small clusters. 
Extrapolating the trends and comparing with the 
PanFS results suggests that speedups for GPFS and 
Lustre on reasonably sized clusters will be similar to 
the PanFS results.

Figure 3 shows the impact of PLFS on three different parallel 
storage systems: GPFS, Lustre, and Panasas (PanFS). In each graph, 
the y-axis shows the write bandwidth controlled by the number of 
concurrent writers on the x-axis. The red lines show the bandwidth 
for N-N workloads, and the blue lines are the bandwidth for 
small, strided N-1 workloads (strided being a type of regular access 
pattern). 

Notice that all three storage systems show massive performance 
degradation for these N-1 workloads. The green lines are the 
performance of these same N-1 workloads as written through PLFS. 
PLFS allows the application to use its preferred N-1 workload and 
achieve close to the bandwidth it would have achieved if using an 
N-N workload. For Lustre and GPFS, the N-1 bandwidth through 
PLFS is much better than the N-1 bandwidth directly to the storage 
system, but it is not as good as the N-N bandwidth. 

For Panasas, however, N-1 through PLFS does match the N-N 
bandwidth. Notice that the x-axes are very different. The GPFS 
and Lustre results were gathered on small clusters of fewer than 50 
nodes, whereas the Panasas results come from a cluster of several 
thousand nodes. We expect that the PLFS results on Lustre and 
GPFS will match N-N bandwidths for larger-sized clusters.
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